Computational Modeling of Human Head Conductivity

نویسندگان

  • Adnan Salman
  • Sergei Turovets
  • Allen D. Malony
  • Jeff Eriksen
  • Don M. Tucker
چکیده

The computational environment for estimation of unknown regional electrical conductivities of the human head, based on realistic geometry from segmented MRI up to 256 resolution, is described. A finite difference alternating direction implicit (ADI) algorithm, parallelized using OpenMP, is used to solve the forward problem describing the electrical field distribution throughout the head given known electrical sources. A simplex search in the multi-dimensional parameter space of tissue conductivities is conducted in parallel using a distributed system of heterogeneous computational resources. The theoretical and computational formulation of the problem is presented. Results from test studies are provided, comparing retrieved conductivities to known solutions from simulation. Performance statistics are also given showing both the scaling of the forward problem and the performance dynamics of the distributed search.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Parallel Simulated Annealing for Computational Modeling of Human Head Conductivity

We present a parallel computational environment used to determine conductivity properties of human head tissues when the effects of skull inhomogeneities are modeled. The environment employs a parallel simulated annealing algorithm to overcome poor convergence rates of the simplex method for larger numbers of head tissues required for accurate modeling of electromagnetic dynamics of brain funct...

متن کامل

Computational Modeling of Human Head Electromagnetics for Source Localization of Milliscale Brain Dynamics

Understanding the milliscale (temporal and spatial) dynamics of the human brain activity requires high-resolution modeling of head electromagnetics and source localization of EEG data. We have developed an automated environment to construct individualized computational head models from image segmentation and to estimate conductivity parameters using electrical impedance tomography methods. Algo...

متن کامل

MULTI PHASE COMPUTATIONAL FLUID DYNAMICS MODELING OF CAVITATING FLOWS OVER AXISYMMETRIC HEAD-FORMS

 In the present paper, partial cavitation over various head-forms was studied numerically to predict the shape of the cavity. Navier-Stokes equations in addition to an advection equation for vapor volume fraction were solved. Mass transfer between the phases was modeled by a sink term in vapor equation in the numerical analysis for different geometries in wide range of cavitation numbers. The r...

متن کامل

Computational Study of Subdural Cortical Stimulation: Effects of Simulating Anisotropic Conductivity on Activation of Cortical Neurons

Subdural cortical stimulation (SuCS) is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical...

متن کامل

Multi-cluster, Mixed-Mode Computational Modeling of Human Head Conductivity

A multi-cluster computational environment with mixed-mode (MPI + OpenMP) parallelism for estimation of unknown regional electrical conductivities of the human head, based on realistic geometry from segmented MRI up to 256 voxels resolution, is described. A finite difference multi-component alternating direction implicit (ADI) algorithm, parallelized using OpenMP, is used to solve the forward pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005